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With the COBE detection of large-angle anisotropy in 
the cosmic microwave background (CMB), results from 
numerous balloon-borne and ground-based experiments, 
and the advent of a new generation of satellite missions, 
the CMB is becoming an increasingly precise probe of the 
early Universe. CMB anisotropies will help determine 
whether density perturbations (scalar modes) are the re- 
sult of inflation, topological defects, or perhaps some 
other mechanism. Detection of a stochastic gravity-wave 
background (tensor modes) [I] or vertical motions in the 
primeval fluid (vector modes) would help to discriminate 
between these models. Inflation damps out vector modes 

but will produce some tensor modes and also predicts a 
specific relationship between the spectrum of the scalar 

and tensor fluctuations (21. In contrast, topological de- 
fects will produce a mixture of scalar, vector, and ten- 
sor modes. Scalar modes give rise to both the observed 
large-scale structure and CMB fluctuations, while in the 
foreseeable future we can only expect to observe the con- 
sequences of tensor or vector modes through their effects 
on the CMB. Without a model of primordial fluctuations, 
the contribution of scalar, vector, and tensor modes to 

the CMB temperature anisotropy are indistinguishable. 
However, any mechanism which produces temperature 

anisotropies will invariably lead to non-zero polarization 
as well [3-51. As we demonstrate in this Letter, this 
polarization signal can be used to discriminate between 
scalar and vector or tensor metric perturbations. COBE 
has already mapped the polarization pattern with an an- 
gular resolution of 7O (although the data has not been 

analyzed), and MAP [6] will measure the polarization 
with a resolution of around 0.3”. 

In prior work, the auto- and cross-correlations between 

the Stokes parameters Q and U and the temperature T 

have been considered. Here Q and U are defined with 

respect to particular orthogonal axes on the celestial 

sphere. While this formalism does provide a complete 
description of the polarization, there is no rotationally 
invariant way to lay down orthogonal basis vectors on a 
sphere, so the meaning of QQ, QO, UU, QT, or UT will 
depend on absolute positions of the points being corm- 
lated rather than just the relative position. Calculations 
of this sort have been done with a small-angle approxi- 
mation, since rotational non-invariance disappears when 

considering only a small patch of the sky. However, this 
formalism is not optimal for describing the complete tem- 
perature and polarization correlations present in full-sky 
maps. 

Here we present a rotationally covariant formalism for 
describing the polarization pattern on a full sky. The 
Stokes parameters, defined by the 2 x 2 correlation matrix 
of the electric field of incoming photons, can be described 
as a tensor field on the celestial sphere. The Q and U pa- 

rameters, describing linear polarization, are just given by 
the symmetric trace-free (STF) part of this tensor. For 
example, in spherical polar coordinates (t?, 4), where the 
spherical metric is gob = diag( 1, sin’e), the polarization 
tensor is 

Po,(ii) = ; Q(3 -U(G) sine 
-U(A) sin8 -Q(G) sir? 0 > * (1) 
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The %bb” are the tensor indices, and we use standard 
tensor notation throughout. It is nat-ural to decompose 
the linear-polarization pattern into STF tensor spherical 
harmonics [7,8], which constitute a complete orthonor- 

mal set of rank-2 STF tensors on the sphere. There are 
two types of harmonic STF tensors, YtFm ,,, 

one of each for every one of the usual sp i-i 

and Y&Jab, 
erical harmon- 

its Y(l,,,) with I 3 2. Two sets of tensor harmonics are 

required as there are two modes of linear polarization, Q 
and U. Since Compton scattering can produce no net cir- 
cular polarization, the CMB is expected to have V = 0, 

and the V Stokes parameter will not be considered fur- 
ther. 

The harmonic expansion of an all-sky map of the CMB 

temperature and polarization can be written 

?g = 1+ ~“;m)q,,,(f4J Im 

The mode amplitudes are given by 

1 
a&) = j7 

P 
/ 

diT(fi) ~i,,,,($ 

gin) = z J dip.,(t) Y$;;‘(ii), 

I 
dfip,,(ii) I;~~;=@), 

(2) 

(3) 

which can be derived from the orthonormality properties 

J dfiY&,,)(fi)Y(r,~)(fi) = 6wL,~, 
J dii Y$&,, (“)Fy,,$, (ii) = 6~ &,,,,,~, 

J dhl$&,, (ii)l$,$,(A) = 6rp6m,t, 

J dH’$$,,(+‘&$(ii) = 0. (4) 

Here TO is the cosmological mean CMB temperature and 
we are assuming Q and 17 are measured in brightness 
temperature units rather than flux units. 

The two geometrically distinct tensor harmonics are 

$n,c,r = NI 
( 

++,~ - +&):ec 
> 

, 

q?in,ol. = $ 
( 

Y(lm):&b + qlm):&l * 
1 

(5) 

Here Nl = J2(1 - 2)!/(1+ 2)! is a normalization factor, 
l ,,) is the completely antisymmetric tensor, and “? in- 
dicates a covariant derivative on the sphere. In two di- 

mensions, any STF tensor can be uniquely decomposed 
into a part of the form A:,,, - (1/2)g,bA:,’ and another 
part of the form &&) + B:&,, where A and B are 

two scalar functions. This decomposition is quite similar 

to the decomposition of a vector field into a part which 
is the gradient of a scalar field and a part which is the 
curl of a vector field; hence we use the notation G for 
‘gradient” and C for “curIn. Since the Y(,,)‘s provide 
a complete basis for scalar functions on the sphere, the 

q?m).* ‘s and Y$,,,,‘s provide a complete basis for G- 

type and C-type STF tensors, respectively. This G/C 
decomposition is also known as the scalar/pseudo-scalar 

decomposition [8]. 
In (fJ, 4) coordinates, where Eq. (1) holds, the harmon- 

ics are given explicitly by 

r,P,)ab(‘) = + 
Yw X(,,) sin 8 

X(,,) sin 0 -W(,,, sina fi ’ 

%W(‘) = + 
-x(h) W(f-) sin 6 

W(I,) sin fjJ Xt,,, sin’@ > 
(6) 

with the definitions 

wtrm) - 
( 

aa 
aeo - cot e,, a+- 

ma 

sin’ e > 
+J+ 

X(h) = s (L-d) q,,). (7) 

The exchange symmetry {Q,U) - (U,-Q} as G-C 
indicates that Y&,,, and Y&jo~ represent polarizations 

rotated by 45’. 
A most useful property of the G/C decomposition is 

that, in linear theory, scalar perturbations can produce 

only G-type polarization and not C-type polarization. 
This is in contrast to tensor or vector metric perturba- 
tions which will produce a mixture of both types. To 

understand why scalar metric perturbations do not pro- 
duce a C-type polarization pattern, consider a scalar per- 
turbation with single Fourier mode k in the i direction. 
The polarization in a given direction can be represented 
by a magnitude P = (Q’ + U’)‘/’ and an orientation an- 
gle Q from the axis defining the Stokes parameters (here, 

choose i), where tan2a = U/Q. For scalar perturba- 
tions, the orientation of the polarization can be deter- 
mined only by the direction of k: thus a = 0 if the polar- 

ization orientation is along the direction of k, ot Q = r/2 
if the orientation is perpendicular to the direction of k. 
In either case, in a given region of the sky all of the orien- 
tations are parallel and thus the polarization pattern has 
no curl. Since the curl is a linear operator, summing over 

Fourier modes does not alter this conclusion. For tensor 
and vector perturbations, the azimuthal symmetry in the 
scalar case is explicitly broken, and thus the Fourier vec- 
tor does not completely define the direction of the polar- 
ization orientation. Another way to state this argument 
is that scalar perturbations have no handedness so they 
cannot produce any “curl’,, whereas vector and tensor 

perturbations do have a handedness and therefore can. 
Finding a non-zero component of C-type polarization 

in the CMB would provide compelling evidence for sig- 
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nificant contribution of either vector or tensor perturba- 
tions at the time of last scattering. Given a polarization 
map of even a small part of the sky one could in princi- 
ple test for vector or tensor contribution by computing 
the combination of derivatives of the polarization given 

by Pa’:&,, which will be non-zero only for C-type p* 
larization, i.e. when vector or tensor perturbations are 
present. Similarly only G-type polarization contributes 
to Pa*:.). Of course, taking derivatives of noisy data is 
problematic; more robust measures are given below. 

We now turn to statistics of CMB polarization. If the 
cosmological inhomogeneities are Gaussian random noise, 
then to the extent linear theory is valid, the CMB fluctu- 
ations will also be Gaussian random noise. Regardless of 
whether the distribution is Gaussian, rotational invari- 
ance requires that the P-point correlations be of the form 

( a;:) +d) > 
= c,T6,p 6*ml, 

( q’c, +Ld) > 
= ClG6,,l a,,#, 

( a&, $lm’) > = c% 6md ’ 

( $A) DEW) > 
= C,TG6,,l 6mml, 

( $2, $W) > 
= pa If’ 6 mm’ I 

( ~~~) &) > 
= C,GC6,[‘6*mf . (8) 

If we also require that the distribution of inhomogeneities 
be invariant under parity, then cc = Cp” = 0 since the 

Y&,,) and the YIymJo, have parity (-1)’ while the Y(y,,,,, 

have parity (-1) ‘+l. Measuring a non-zero @” and/or 
Cl”” would be quite interesting, indicating a handed- 
ness to the inhomogeneities in our universe. However 
we do not expect this and will henceforth only consider 
the four angular power spectra {CT, Cl”, Cf, CF”}. The 
first is the well-known angular power spectrum of tem- 
perature anisotropies while the last three, new to this 
paper, are related to various quantities in previous work 

(see Ref. [9]). Note that the scalar, vector, and tensor 
contribution to each of the C,‘s adds in quadrature, i.e. 
for X =T, G, C, TG 

cl” = (pcdu + pct0’ + (pwor , 
(9) 

and this is true whether or not the fluctuations are Gaus- 
sian. We have argued that CIc’cdu = 0. 

Given an all-sky temperature/polarization map, one 
can determine the a(r,,,I’s using Eq. (3)’ and then con- 

struct estimators for the Cl’s in the usual way, i.e., 

i b&n)l’ cs= c - i b&,la 
m--, 21+1 ’ 

+ c - 

$ = g ‘$)I’, 

m--, 21+1 ’ 

p = ;g, a?;l;ym). (10) 

If only part of the sky is mapped, the same techniques 
developed to analyze anisotropy with incomplete sky cov- 
erage [lo] may be applied to polarization to construct 

other estimators of the various Ct’s. The mean square 
polarization is 

Qa + u’ = 2pabPab = Pi + Pi (11) 

where 

Fg pl 
F= c 

O” 21+13 C- 
8~ I J T,1- c 

OD 21+1ro 
- I * (l-4 

ka ka 8r 

Since scalar modes do not contribute to e, this 
statistic provides a powerful and unambiguous model- 

independent probe of tensor and vector perturbations. 
To test a given spectrum of tensor modes against a per 

larization map, comparing the complete set of predicted 

CF with the estimators CT is more powerful than con- 

sidering only Pi, if the detection has sufficient signal- 
to-noise. Usually, however, the theory being tested has 
scalar as well as non-scalar modes, along with undeter- 
mined cosmological parameters. If so, the most informa- 
tion can be extracted from the map by comparing the en- 
tire set of predicted moments, {CT, Cl”, Co, CT”}, with 
the measured estimators [11,12]. 

Note that only the Cp’s potentially allow detection of a 
small vector or tensor signal. If scalar perturbations dom- 
inate, then the vector or tensor signal in (CT, Cl”, CT”} 
may be swamped by the cosmic variance in the scalar sig- 
nal, but the Cy’s are not contaminated in this way. The 
cross-correlation moments Go, which differ for scalar, 
vector, and tensor perturbations [13], will be larger than 

the polarization autocorrelation moments. Furthermore, 
the noise in the temperature and polarization maps will 
be to a large extent uncorrelated, so the pixel-noise vari- 
ance to these moments will be substantially reduced. 
Therefore, the temperature-polarization cross correlation 
may be measured with some precision. 

Much of the small-angle formalism of Refs. [3-5’13-161 
can be reproduced by replacing the Yfr,)(fi)‘s in our 

formalism with Fourier modes, eil.*, and using regu- 
lar derivatives rather than covariant ones. This small- 
angle formalism is completely analogous to that devel- 
oped above and will provide an accurate description of 

a region of sky small enough to be approximated by a 
flat surface. The G/C decomposition in the small-angle 

formalism can be used to detect non-scalar perturbations 
on small scales, though the tensor and vector signal are 
liable to drop off rapidly at angular scales smaller than 
a few degrees. 

To make contact with previous work, we can write the 
twc+point temperature and polarization correlation func- 
tions [3-5’13-161 in terms of multipole moments [9]. Al- 
though correlation functions of Stokes parameters which 
appear in the previous literature depend on the positions 



of the points being correlated, rotationally-invariant cor- 
relation functions exist which are closely related to those 
discussed above. To construct them, define Stokes pa- 
rameters QV and U, with respect to axes which are paral- 

lel and perpendicular to the great arc (or geodesic) which 
connects the two points being correlated. The two-point 

correlation functions are 

CT(e) = tT(al)T(~a)),,.,l=,,,, 

= T; c y c;r p,(cos e), 

@PI = tbr(el,9r(da)),J.dr=c.,( 

=T:F 4z 21+1[C,OW(i2)(4 0) + iC,CX(i2)(4 O)l, 
a A 

@W = (U+(ni)U,(na))bl.dl=cors 
= Ti F $$C$V~~a)(8,0) + @X(a) (4 O)l, 

CTvP) = (T(~l)Ql(~a)),,.a,=,,o 
= T;T y N, CI” P;(cod), (13) 

where 8 is the angle separating the two points and Pt 

is the m = 2 associated Legendre function. Since Q, 

and T are invariant under reflection along the great 
arc connecting the two points while U, changes sign, 
(Q,U,) = (U,T) = 0 if statistical invariance under 

parity holds. Eqs. (13) reduce to the correct small- 
angle formulae [16] when 8 < 1. The functions 

(@(0),Cv(t9),CU(t9),drv(8)} are a different way of 
representing {C~,c;‘,C~,C~“> and vice versa. In 
Gaussian models either set provides a complete statistical 
description of the temperature and polarization patterns. 

The largest hurdles to detecting and characterizing 
CMB polarization are sensitivity and foregrounds. In 
adiabatic models with standard recombination the po- 
larization is only a few percent of the anisotropy, al- 
though it may be larger in reionized [15], isocurvature, or 
topological-defect models.’ Thus the polarization signal is 
at least an order of magnitude below current experimen- 
tal sensitivities. Experiments planned or envisioned over 
the coming decade, however, will likely attain the raw 

sensitivity necessary for detailed polarization investiga- 
tions. Polarized emission from foreground sources is a 
relatively unknown factor at this time. Foreground emis- 
sion and any Faraday rotation will certainly contribute 

to the C-type polarization, but these contaminants can 
be subtracted using multi-frequency observations. On 

sub-degree scales, where the signal from vector and ten- 
sor modes are liable to be negligible, any measurable 
C-type polarization is a likely indicator of contamina- 

tion. Polarization measurements will be difficult, but the 
promise of using them to detect gravity waves or vorticity, 
and hence to discriminate between cosmological models, 

makes these measurement potentially very valuable. 
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